(2009 浙江)设α,β是两个不同的平面,l是一条直线,以下命题正确的是(  )

答案:解:若l⊥α,α⊥β,则l?β或l∥β,故A错误;
若l∥α,α∥β,则l?β或l∥β,故B错误;
若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;
若l∥α,α⊥β,则l⊥β或l∥β,故D错误;
故选C
点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性质定理(α∥β,a?α?a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α?a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.
分析:本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.
  •   评论 & 纠错   
回顶部
  • (2009?浙江)设α,β是两个不同的平面,l是一条直线,以下命题正确的是(  )